首页> 外文OA文献 >Approximation Multivariate Distribution with pair copula Using the Orthonormal Polynomial and Legendre Multiwavelets basis functions
【2h】

Approximation Multivariate Distribution with pair copula Using the Orthonormal Polynomial and Legendre Multiwavelets basis functions

机译:用Copula逼近多元分布   正交多项式和勒让德多小波基函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we concentrate on new methodologies for copulas introduced anddeveloped by Joe, Cooke, Bedford, Kurowica, Daneshkhah and others on the newclass of graphical models called vines as a way of constructing higherdimensional distributions. We develop the approximation method presented byBedford et al (2012) at which they show that any $n$-dimensional copula densitycan be approximated arbitrarily well pointwise using a finite parameter set of2-dimensional copulas in a vine or pair-copula construction. Our constructiveapproach involves the use of minimum information copulas that can be specifiedto any required degree of precision based on the available data or experts'judgements. By using this method, we are able to use a fixed finite dimensionalfamily of copulas to be employed in a vine construction, with the promise of auniform level of approximation. The basic idea behind this method is to use a two-dimensional ordinarypolynomial series to approximate any log-density of a bivariate copula functionby truncating the series at an appropriate point. We present an alternativeapproximation of the multivariate distribution of interest by consideringorthonormal polynomial and Legendre multiwavelets as the basis functions. Weshow the derived approximations are more precise and computationally fasterwith better properties than the one proposed by Bedford et al. (2012). We thenapply our method to modelling a dataset of Norwegian financial data that waspreviously analysed in the series of papers, and finally compare our results bythem.
机译:在本文中,我们将重点放在乔,库克,贝德福德,库罗维察,达内什卡赫等人提出和开发的copulas的新方法上,这些新方法是使用称为葡萄树的新图形模型来构造高维分布。我们开发了贝德福德(Bedford)等人(2012)提出的近似方法,在该方法中,他们表明,在葡萄树或成对对虾构造中,使用二维对虾的有限参数集可以任意很好地逐点逼近$ n $维对虾的密度。我们的建设性方法涉及使用最小信息关联,可以根据可用数据或专家的判断将其指定为任何要求的精确度。通过使用这种方法,我们能够在葡萄树构造中使用固定的copulas有限维族,并保证均匀的近似水平。该方法的基本思想是使用二维普通多项式级数,通过在适当的位置截断该级数来近似二元copula函数的任何对数密度。通过考虑正交多项式和勒让德多小波作为基函数,我们提出了感兴趣的多元分布的一种替代近似。我们证明,与Bedford等人提出的方法相比,得出的近似方法更精确,计算速度更快,并且具有更好的性能。 (2012)。然后,我们将我们的方法应用于先前在系列论文中进行过分析的挪威财务数据的数据集建模,最后将它们的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号